This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
In 2014, the district pushed algebra to ninth grade from eighth grade, in an attempt to eliminate the tracking, or grouping, of students into lower and upper math paths. The district hoped that scrapping honors math classes and eighth grade algebra courses would reduce disparities in math learning in the district.
Julie Lynem’s son had taken algebra in eighth grade, but hadn’t comprehended some of the core concepts. That left the family to decide whether to make him repeat the class in ninth grade — and potentially disadvantage him by preventing him from taking calculus later in high school — or to have him push through.
That’s the argument of Peter Liljedahl, a professor of mathematics education at Simon Fraser University in Vancouver, who has spent years researching what works in teaching. These are the students who end up hitting a wall when math courses move from easier algebra to more advanced concepts in, say, calculus, he argues. “At
In its current form, school algebra serves as a gatekeeper to higher-level mathematics. Researchers and policy makers have pushed to open that gate—providing more students access to algebra, focusing in particular on those students historically denied access to higher-level mathematics. Let’s Not Be So Quick to Give Up on Algebra.
As I teach my Linear Algebra and Differential Equations class this semester, which uses more computing than ever, I'm thinking even more about these topics. Can anyone seriously imagine banning microscope technology from the biology major, on the argument that biology is a more pure discipline without the technology?
Line, Surface and Contour Integration “Find the integral of the function ” is a typical core thing one wants to do in calculus. But particularly in applications of calculus, it’s common to want to ask slightly more elaborate questions, like “What’s the integral of over the region ?”, or “What’s the integral of along the line ?”
So did that mean we were “finished” with calculus? Somewhere along the way we built out discrete calculus , asymptotic expansions and integral transforms. And in Version 14 there are significant advances around calculus. Another advance has to do with expanding the range of “pre-packaged” calculus operations.
Some involve alternate functional forms; others involve introducing additional functions, or allowing multiple arguments to our function f. But it turns out that the fact that this can happen depends critically on the Ackermann function having more than one argument—so that one can construct the “diagonal” f [ m , m , m ].
Since the standard Wolfram Language evaluator evaluates arguments first (“leftmost-innermost evaluation”), it therefore won’t terminate in this case—even though there are branches in the multiway evaluation (corresponding to “outermost evaluation”) that do terminate. As the Version 1.0
An argument for traditional grading goes like this: Sure, a single assessment might have a grade on it that doesn't accurately reflect student understanding. Nobody likes traditional grading because it is so soul-sucking and time-consuming, so why do it more often than necessary? This has a connection with the next point.
Events are like functions, whose “arguments” are incoming tokens, and whose output is one or more outgoing tokens. And the same issue arose for Alonzo Church’s lambda calculus (introduced around 1930). The systems can be based on Boolean algebra, database updating or other kinds of ultimately computational rules.
Events are like functions, whose “arguments” are incoming tokens, and whose output is one or more outgoing tokens. And the same issue arose for Alonzo Church’s lambda calculus (introduced around 1930). The systems can be based on Boolean algebra, database updating or other kinds of ultimately computational rules.
For example, we know (as I discovered in 2000) that (( b · c ) · a ) · ( b · (( b · a ) · b )) = a is the minimal axiom system for Boolean algebra , because FindEquationalProof finds a path that proves it. But what about other models of computation—like cellular automata or register machines or lambda calculus?
One can view a symbolic expression such as f[g[x][y, h[z]], w] as a hierarchical or tree structure , in which at every level some particular “head” (like f ) is “applied to” one or more arguments. So how about logic, or, more specifically Boolean algebra ? We’ve looked at axioms for group theory and for Boolean algebra.
In the end—after all sorts of philosophical arguments, and an analysis of actual historical data —the answer was: “It’s Complicated”. A test example coming soon is whether I can easily explain math ideas like algebra and calculus this way.) And the challenge is in effect to build a “21st century Euclid”, then Newton, etc.—eventually
Almost any algebraic computation ends up somehow involving polynomials. can be manipulated as an algebraic number, but with minimal polynomial: ✕. And all of this makes possible a transformative update to polynomial linear algebra, i.e. operations on matrices whose elements are (univariate) polynomials. ✕.
It didn’t help that his knowledge of physics was at best spotty (and, for example, I don’t think he ever really learned calculus). Then McCarthy started to explain ways a computer could do algebra. It was all algebra. Richard Feynman and I would get into very fierce arguments. And he says “There’s a problem.
We organize all of the trending information in your field so you don't have to. Join 28,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content