This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
In its current form, school algebra serves as a gatekeeper to higher-level mathematics. Researchers and policy makers have pushed to open that gate—providing more students access to algebra, focusing in particular on those students historically denied access to higher-level mathematics. Let’s Not Be So Quick to Give Up on Algebra.
Introducing Tabular Manipulating Data in Tabular Getting Data into Tabular Cleaning Data for Tabular The Structure of Tabular Tabular Everywhere Algebra with Symbolic Arrays Language Tune-Ups Brightening Our Colors; Spiffing Up for 2025 LLM Streamlining & Streaming Streamlining Parallel Computation: Launch All the Machines!
One can view a symbolic expression such as f[g[x][y, h[z]], w] as a hierarchical or tree structure , in which at every level some particular “head” (like f ) is “applied to” one or more arguments. and at t steps gives a total number of rules equal to: ✕. So how about logic, or, more specifically Boolean algebra ?
Library and research skills cover areas such as knowing how to reference and cite authors properly, being able to discern between reliable and unreliable sources of information, accessing scientific literature and giving accurate evidence-based arguments when writing scientific essays and reports. What do students learn from studying this?
And, yes, when you try to run the function, it’ll notice it doesn’t have correct arguments and options specified. But what if we ask a question where the answer is some algebraic expression? The issue is that there may be many mathematically equal forms of that expression. And, yes, it’s taken a while, but now in Version 13.3
Some involve alternate functional forms; others involve introducing additional functions, or allowing multiple arguments to our function f. But it turns out that the fact that this can happen depends critically on the Ackermann function having more than one argument—so that one can construct the “diagonal” f [ m , m , m ].
For integers, the obvious notion of equivalence is numerical equality. For example, we know (as I discovered in 2000) that (( b · c ) · a ) · ( b · (( b · a ) · b )) = a is the minimal axiom system for Boolean algebra , because FindEquationalProof finds a path that proves it.
In 2000 I was interested in what the simplest possible axiom system for logic (Boolean algebra) might be. of what’s now Wolfram Language —we were trying to develop algorithms to compute hundreds of mathematical special functions over very broad ranges of arguments. Back in 1987—as part of building Version 1.0
In the basic definition of a standard cellular automaton, the rule “takes its arguments” in a definite order. But what kind of integro-differential-algebraic equation can reproduce the time evolution isn’t clear. RandomGraph[{20, 40}, EdgeStyle -> Gray, VertexStyle -> Table[i -> (RandomInteger[] /. {0
We organize all of the trending information in your field so you don't have to. Join 28,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content