This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Study.com is an online distance learning portal that provides over 70,000 lessons in fifteen subjects (including algebra, calculus, chemistry, macro- and microeconomics, and physics) aligned with many popular textbooks. Resources include not only videos but study tools, guides, and more.
Most are about five minutes (some longer, some shorter) and cover topics like chemistry, physics, calculus, geometry, biology, Algebra, trigonometry, grammar, ACT prep, and SAT prep. Bright Science is a free YouTube channel of over 1300 study videos for high schoolers (or precocious middle schoolers).
Any integral of an algebraic function can in principle be done in terms of our general DifferentialRoot objects. Turning from calculus to algebra, we’ve added the function PolynomialSumOfSquaresList that provides a kind of “certificate of positivity” for a multivariate polynomial. And a third of a century later—in Version 13.0—we’re
But with the multicomputational paradigm there’s now the remarkable possibility that this feature of physics could be transported to many other fields—and could deliver there what’s in many cases been seen as a “holy grail” of finding “physics-like” laws. Chemistry / Molecular Biology. Perhaps not for chemistry as it’s done today.
But with the multicomputational paradigm there’s now the remarkable possibility that this feature of physics could be transported to many other fields—and could deliver there what’s in many cases been seen as a “holy grail” of finding “physics-like” laws. Chemistry / Molecular Biology. Perhaps not for chemistry as it’s done today.
The fall of 2021 involved really leaning into the new multicomputational paradigm , among other things giving a long list of where it might apply : metamathematics, chemistry, molecular biology, evolutionary biology, neuroscience, immunology, linguistics, economics, machine learning, distributed computing. Let’s talk first about chemistry.
In 2015 Ed told me a nice story about his time at Caltech: In 1952–53, I was a student in Linus Pauling’s class where he lectured Freshman Chemistry at Caltech. Then McCarthy started to explain ways a computer could do algebra. It was all algebra. And he says “There’s a problem.
We organize all of the trending information in your field so you don't have to. Join 28,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content