This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Events are like functions, whose “arguments” are incoming tokens, and whose output is one or more outgoing tokens. Imagine for example that one has a neural net with a certain architecture. And the same issue arose for Alonzo Church’s lambda calculus (introduced around 1930). One is so-called Böhm trees.
Events are like functions, whose “arguments” are incoming tokens, and whose output is one or more outgoing tokens. Imagine for example that one has a neural net with a certain architecture. And the same issue arose for Alonzo Church’s lambda calculus (introduced around 1930). One is so-called Böhm trees.
But what about other models of computation—like cellular automata or register machines or lambda calculus? And we can trace the argument for this to the Principle of Computational Equivalence. We’ve talked about building up the ruliad using Turing machines. A very important claim about the ruliad is that it’s unique.
It didn’t help that his knowledge of physics was at best spotty (and, for example, I don’t think he ever really learned calculus). Richard Feynman and I would get into very fierce arguments. But it also led him to the idea that the universe must be a giant cellular automaton—whose program he could invent. It’s just my nature.
We organize all of the trending information in your field so you don't have to. Join 28,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content