This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
It’s not obvious that it would be feasible to find the path of the steepest descent on the “weight landscape” But calculus comes to the rescue. It turns out that the chain rule of calculus in effect lets us “unravel” the operations done by successive layers in the neural net. There are several key parts.
And in the end, as we’ll discuss later, that’s a more flexible and powerful way to communicate. But then mathematical notation was invented, and math took off—with the development of algebra, calculus, and eventually all the various mathematical sciences. But it doesn’t work unless the Wolfram Language code is exactly right.
And in the end, maybe it just takes a different kind of “chemical observer” (and maybe one more embedded in the system and operating at a molecular scale) to be able to understand the “overall architecture” of many of the molecular computations that go on in biology. (By How can one make a multicomputational model for this process?
And in the end, maybe it just takes a different kind of “chemical observer” (and maybe one more embedded in the system and operating at a molecular scale) to be able to understand the “overall architecture” of many of the molecular computations that go on in biology. (By How can one make a multicomputational model for this process?
We organize all of the trending information in your field so you don't have to. Join 28,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content