This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Pathway from school to materials science and engineering • Ryan suggests physics and chemistry as the subjects most relevant for MS&E. I had great arguments about mathematical proofs with my amazing grade school maths teachers and was a regular at Boston’s science museum.
I strongly believe that the world needs engineers with strong critical thinking skills, who know how to ask questions, understand bias, construct and evaluate arguments, and think comprehensively and creatively. This goes hand in hand with ethical thinking.
The function Map takes a function f and “maps it” over a list: Comap does the “mathematically co-” version of this, taking a list of functions and “comapping” them onto a single argument: Why is this useful? But we wanted to be able to compute hundreds of different functions to arbitrary precision for any complex values of their arguments.
I think Yves Pomeau already had a theoretical argument for this, but as far as I was concerned, it was (at least at first) just a “next thing to try”. That’s not something ordinary chemistry—dealing for example with liquid-phase reactions—tends to consider important. But just what might the “choreography” of molecules be like?
We organize all of the trending information in your field so you don't have to. Join 28,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content